Matrix subspaces and determinantal hypersurfaces
نویسندگان
چکیده
منابع مشابه
Refined Intersection Products and Limiting Linear Subspaces of Hypersurfaces
LetX be a hypersurface of degree d in P and FX be the scheme of P ’s contained in X . If X is generic, then FX will have the expected dimension (or empty) and its class is given by the top Chern class of the vector bundle SymU∗, where U is the universal subbundle on the Grassmannian G(r + 1, n+ 1). Things become more interesting when X degenerates. For example, when we deform a generic X into a...
متن کاملDeterminantal Representations and the Hermite Matrix
We consider the problem of writing real polynomials as determinants of symmetric linear matrix polynomials. This problem of algebraic geometry, whose roots go back to the nineteenth century, has recently received new attention from the viewpoint of convex optimization. We relate the question to sums of squares decompositions of a certain Hermite matrix. If some power of a polynomial admits a de...
متن کاملMatrix Subspaces of L 1 ∗
If E = {ei} and F = {fi} are two 1-unconditional basic sequences in L1 with E r-concave and F p-convex, for some 1 ≤ r < p ≤ 2, then the space of matrices {ai,j} with norm ∥{ai,j}∥E(F ) = ∥∥∑ k ∥ ∑ l ak,lfl∥ek ∥∥ embeds into L1. This generalizes a recent result of Prochno and Schütt.
متن کاملDeterminantal divisor rank of an integral matrix
We define the determinantal divisor rank of an integral matrix to be the number of invariant factors which equal 1. Some properties of the determinantal divisor rank are proved, which are analogous to known properties of the usual rank. These include the Frobenious inequality for the rank of a product and a relation between the rank of a submatrix of a matrix and that of its complementary subma...
متن کاملDeterminantal point processes and random matrix theory in a nutshell
3 Universality 5 3.1 Macroscopic behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1.1 Wigner’s semicircle law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Microscopic behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2.1 Bulk universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arkiv för Matematik
سال: 2010
ISSN: 0004-2080
DOI: 10.1007/s11512-009-0098-0