Matrix subspaces and determinantal hypersurfaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refined Intersection Products and Limiting Linear Subspaces of Hypersurfaces

LetX be a hypersurface of degree d in P and FX be the scheme of P ’s contained in X . If X is generic, then FX will have the expected dimension (or empty) and its class is given by the top Chern class of the vector bundle SymU∗, where U is the universal subbundle on the Grassmannian G(r + 1, n+ 1). Things become more interesting when X degenerates. For example, when we deform a generic X into a...

متن کامل

Determinantal Representations and the Hermite Matrix

We consider the problem of writing real polynomials as determinants of symmetric linear matrix polynomials. This problem of algebraic geometry, whose roots go back to the nineteenth century, has recently received new attention from the viewpoint of convex optimization. We relate the question to sums of squares decompositions of a certain Hermite matrix. If some power of a polynomial admits a de...

متن کامل

Matrix Subspaces of L 1 ∗

If E = {ei} and F = {fi} are two 1-unconditional basic sequences in L1 with E r-concave and F p-convex, for some 1 ≤ r < p ≤ 2, then the space of matrices {ai,j} with norm ∥{ai,j}∥E(F ) = ∥∥∑ k ∥ ∑ l ak,lfl∥ek ∥∥ embeds into L1. This generalizes a recent result of Prochno and Schütt.

متن کامل

Determinantal divisor rank of an integral matrix

We define the determinantal divisor rank of an integral matrix to be the number of invariant factors which equal 1. Some properties of the determinantal divisor rank are proved, which are analogous to known properties of the usual rank. These include the Frobenious inequality for the rank of a product and a relation between the rank of a submatrix of a matrix and that of its complementary subma...

متن کامل

Determinantal point processes and random matrix theory in a nutshell

3 Universality 5 3.1 Macroscopic behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1.1 Wigner’s semicircle law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Microscopic behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2.1 Bulk universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arkiv för Matematik

سال: 2010

ISSN: 0004-2080

DOI: 10.1007/s11512-009-0098-0